Divvying Divvy Bikes

A Report from:

Larissa Xia Ruixuan Tu Steven Haworth Yuzhe Zhang Jackson Wegner

Code: https://github.com/TURX/451 divvy bike

Background & Problem

- Chicago
- •City Commuting
- Divvy Bike Rentals
- Crowded and Empty Stations

Addressing the Problem

- Balancing out inflows and outflows of rentals
- Helping the city plan for rental allocation
- Mapping out the optimal way of refilling low-inventory stations

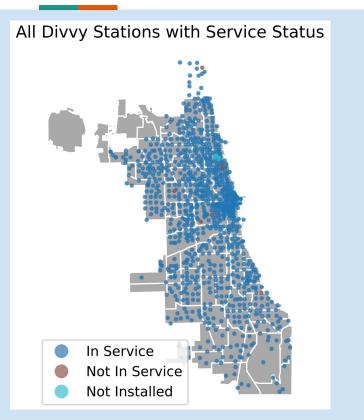
Overflow and Underflow Measurements

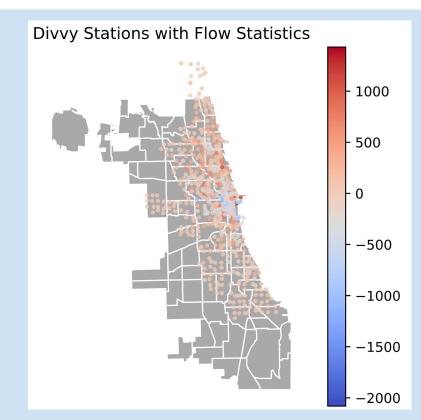
- Tracked flows from Chicago's public dataset for Divvy Bikes
- Measured out stations net flow of bikes
- Marked category and extremity

		STATION ID	STATION NAME	DAILY FLOW		
es	0	114	Sheffield Ave & Waveland Ave	56	- 1000	
	1	91	Clinton St & Washington Blvd	31	- 500	
	2	35	Streeter Dr & Grand Ave	30	500	
	3	220	Clark St & Drummond Pl	27	- 0	
	4	90	Millennium Park	23		
	5	195	Columbus Dr & Randolph St	-84	500	
	6	287	Franklin St & Monroe St	-42		
	7	100	Orleans St & Merchandise Mart Plaza	-40	1000	
	8	174	Canal St & Madison St	-38	1500	
	9	191	Canal St & Monroe St	-38	- –1500	

2000

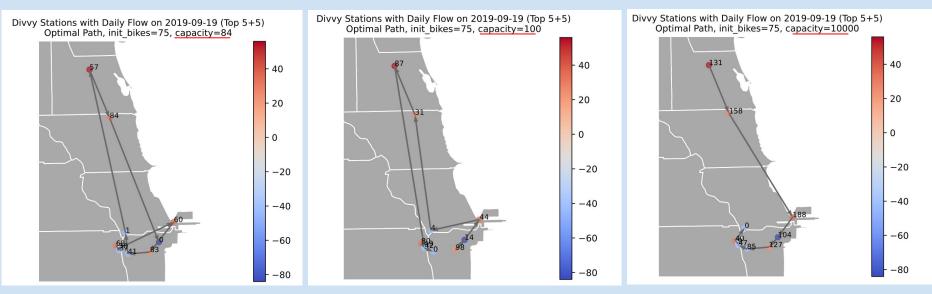
Mapped Out Groupings





Method: Breadth-First Search for Constrained Shortest Hamiltonian Path (the shortest path that visits every node once)
Init bikes: -sum(all bikes on graph) or 0 whichever smaller to avoid global deficiency number of outside bikes to carry before visiting the first station
Capacity: maximum number of bikes the relocation truck can carry

Ideal Routing

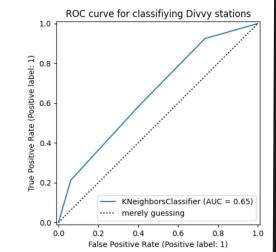


3-NN

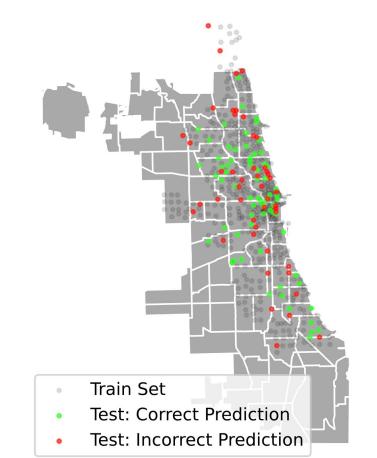
X: Station ID, Longitude, Latitude Y: Overflow (1) / Underflow (-1)

Metrics:

- **Accuracy:** 59%
- Precision: 66%
- **Recall:** 59%
- **F1:** 62%



Divvy Stations with kNN Evaluation



Training Models Used & Effectiveness

Logistic Regression

Accuracy: 57%

Precision: 56%

Recall: 56%

F1: 56%

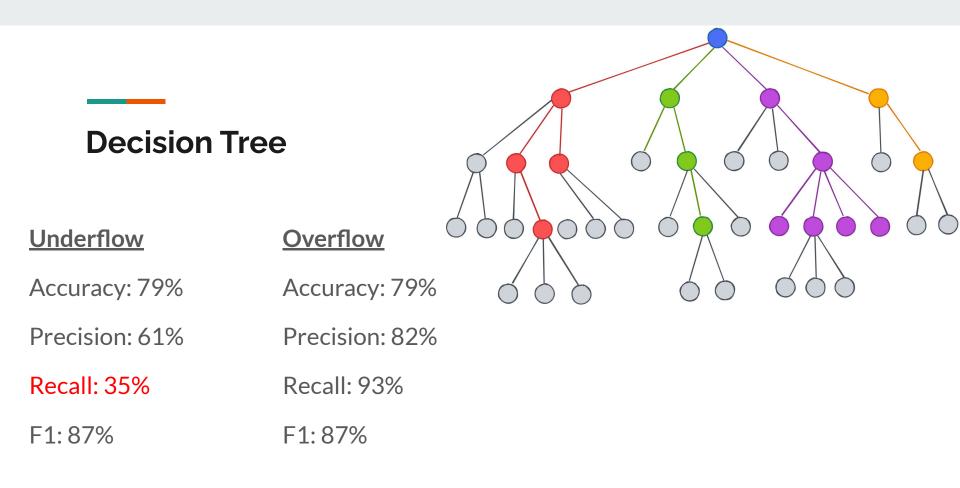
Support Vector Machine

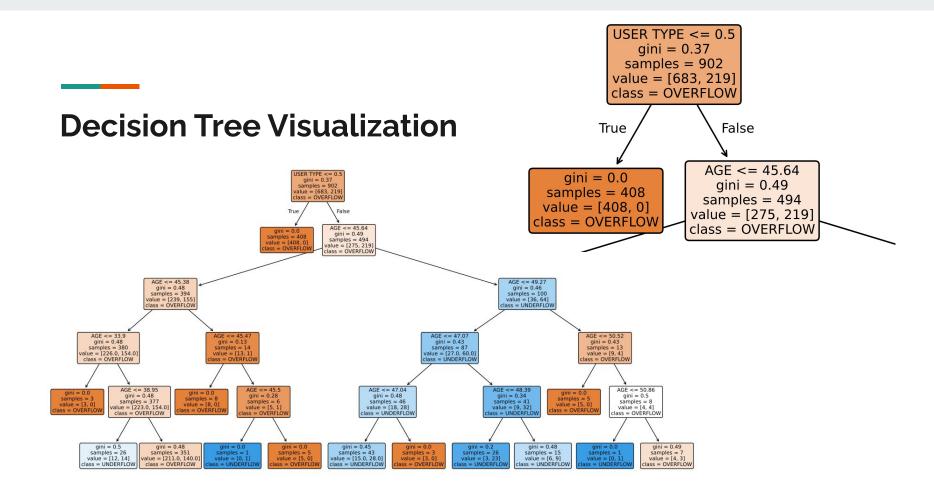
Accuracy: 66%

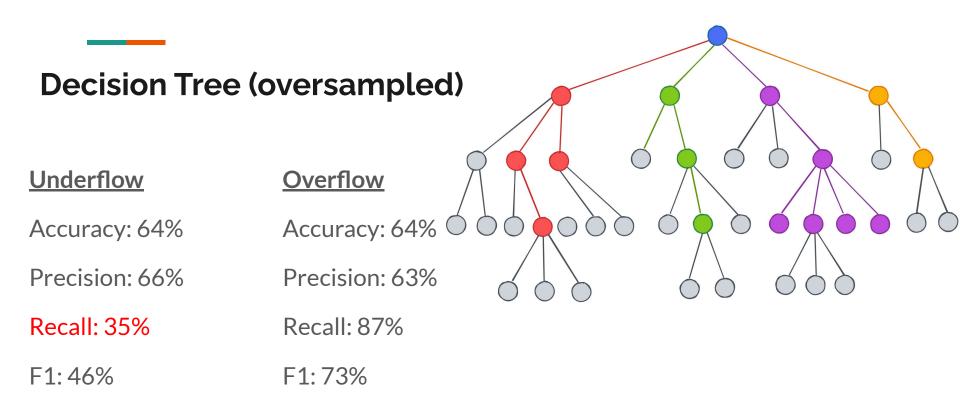
Precision: 65%

Recall: 65%

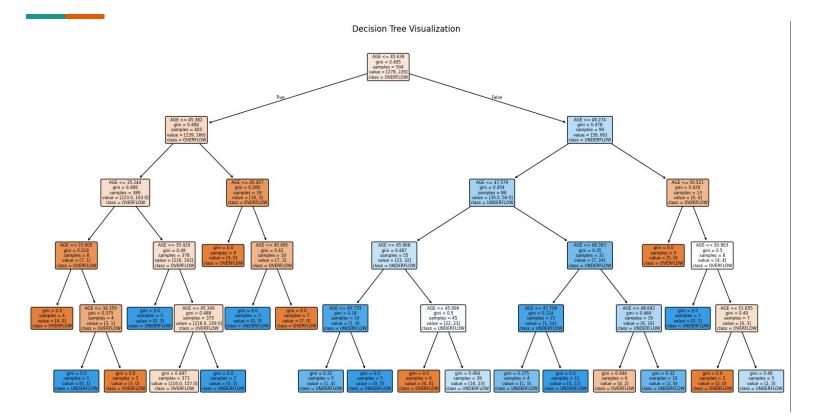
F1:65%





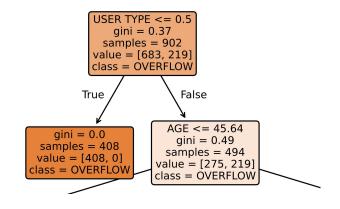


Decision Tree Visualization (Oversampled)



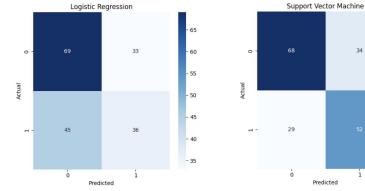
Accuracy and Metrics Explained

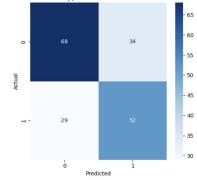
- Why is Recall on UNDERFLOW low?
 - What insights does it provide about Divvy-stations?
 - What did we do to provide balance?
- Oversampling
 - Our dataset may lack pertinent information to classify UNDERFLOW
 - Increasing model decision boundary complexity yielded no real change
 - Other hyper-parameters



Logistic Regression and Support Vector Machine

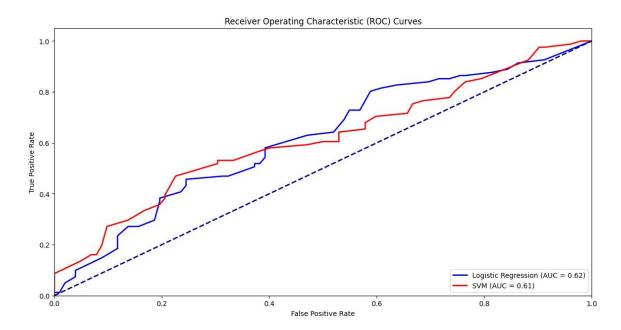
Feature	Logistic Regression	SVM
Total Population	\checkmark	~
Percent Under 18	✓	
Percent 21 and Over	\checkmark	
Percent 60 and Over	\checkmark	
Median Age	\checkmark	
Graduate Degree	✓	\checkmark
Income \$75,000 or More	\checkmark	\checkmark
Walked	\checkmark	\checkmark
Taxicab, Motorcycle, Other	\checkmark	
Moved from Abroad	\checkmark	\checkmark
Bachelors Degree		\checkmark
Mean Travel Time		\checkmark
Owner-Occupied Housing		\checkmark
Renter-Occupied Housing		\checkmark
Moved Different State	•	\checkmark





Metric	Logistic Regression	SVM
Best Parameters	{'C': 10, 'solver': 'saga'}	{'C': 0.1, 'gamma': 'scale', 'kernel': 'sigmoid'}
Accuracy	57.38%	65.57%
Precision	56.35%	65.28%
Recall	56.05%	65.43%
F1 Score	55.94%	65.31%
AUC	0.62	0.61

ROC/AUC



Conclusion

• How can we use demographic data and machine learning algorithms to predict bike availability at Divvy stations in Chicago over a defined period?

Demographic Data around the Bike Station could be used to predict Bike Station Overflow/Underflow. However, due to the static nature of demographic data, they may not be very effective.

• Is the status (overflow, underflow, balanced) of existing Divvy stations a reliable indicator for predicting the status of nearby stations?

The status of existing stations a reliable indicator, but external factors like weather and special events could be included to improve performance.